

EXISTING PCCP TO NEW HMA PAVEMENT

/s/Anthony L. Uremovich 9-01-99
DESIGN STANDARDS ENGINEER DATE

/s/ Donald W. Lucas 9-01-99
CHIEF HIGHWAY ENGINEER DATE

GENERAL NOTES

- (1) Required additional length of L above the 600' minimum shall be added to the length of this parallel lane segment. (Example: If required L = 720', then this parallel lane segment length = 420'). See tables on Standard Drawing E 401-REBS-04.
- (2) Ear construction type A: 2 lines of #5 bars required (Est. weight = 255 lb). Transverse sawed and sealed joint, in line with pavement contraction joint, shall extend through ear construction. The #5 bars shall be discontinued at such joints. See Detail B-B.
- 3. See Standard Drawing E 401-REBS-03 for Section B-B.

CURVE DATA

△ = 3°00'00"

R = 2864.79'

T = 75.02'

L = 150.0'

E = 0.98'

NOTES:

ENTRANCE

LEGEND

- (A) Pavement type and thickness as specified for the mainline.
- (B) Pavement type and thickness as specified for ramps.
- (3) Longitudinal joint
- (21) Longitudinal construction joint

HMA shoulder (Thickness of mainline pavement)

HMA shoulder (Thickness as specified on Typical Sections)

INDIANA DEPARTMENT OF TRANSPORTATION

RAMP ENTRANCE TERMINAL HMA SHOULDER

SEPTEMBER 2008

STANDARD DRAWING NO. E 401- REBS-01

/s/Richard L. VanCleave **DESIGN STANDARDS ENGINEER**

DATE

09/02/08

/s/ Mark A. Miller CHIEF HIGHWAY ENGINEER 09/02/08 DATE

GENERAL NOTES

- 1 Ear construction type A: 2 lines of #5 bars required (Est. wt. = 86 lb). Transverse sawed and sealed joint, in line with pavement contraction joint, shall extend through ear construction. The #5 bars shall be discontinued at such joints. See Detail B-B on Standard Drawing E 401-REBS-01.
- 2. See Standard Drawing E 401-REBS-03 for Section A-A.

LEGEND

- (A) Pavement type and thickness as specified for the mainline.
- (B) Pavement type and thickness as specified for ramps.
- (3) Longitudinal Joint (Optional where indicated)
- 21 Longitudinal Construction Joint

HMA Shoulder (Thickness of mainline pavement)

HMA Shoulder (Thickness as specified on Typical Sections)

CURVE DATA

 $\triangle = 2^{\circ} 17' 26''$

T = 190.91'

L = 381.76'

E = 1.91'

R = 9549.30'

INDIANA DEPARTMENT OF TRANSPORTATION

RAMP EXIT TERMINAL HMA SHOULDER

JANUARY 1999

STANDARD DRAWING NO. E 401-REBS-02

DETAILS PLACED IN THIS FORMAT

/ Anthony L. Uremovich 11-15-99

/s/ Firooz Zandi

ORIGINALLY APPROVED ESIGN STANDARDS ENGINEER

SECTION B-B

LEGEND

- (A) Pavement type and thickness as specified for the mainline.
- B) Pavement type and thickness as specified for ramps.
- (3) Longitudinal joint
- (21) Longitudinal construction joint

HMA shoulder (Thickness of mainline pavement)

				ACCE	LERATIO	N LENG	TH, L (ft)		
			EN	TRANCE	CURVE	E DESIG	N SPEEI	(mph)		
HIGH	STOP CONDITION	15	20	25	30	35	40	45	50	
DESIGN SPEED SPEED REACHED		INTIAL SPEED (mph)								
(mph)	(mph)	0	14	18	22	25	30	36	40	44
30	23	190	_	_	_	_	_	_	_	_
40	31	380	320	250	220	140	_	_	_	_
50	39	760	700	630	580	500	380	160	_	_
60	47	1170	1120	1070	1000	910	800	590	400	170
70	53	1590	1540	1500	1410	1330	1230	1010	830	580

MINIMUM ACCELERATION LENGTHS FOR ENTRANCE TERMINALS
(Flat grades of 2 percent or less)

TABLE A

DESIGN SPEED (mph)	ACCELERATION LANE Ratio of length of grade to length of level for ① Design speed of turning roadway curve (mph)					
(20	30	40	50	ALL SPEEDS	
	2.01 to	4 percent	upgrade		2.01 to 4 percent downgrade	
40	1.3	1.3	_	_	0.7	
50	1.3	1.4	1.4	_	0.65	
60	1.4	1.5	1.5	1.6	0.6	
70	1.5	1.6	1.7	1.8	0.6	
	4.01 to	6 percent	upgrade		4.01 to 6 percent downgrade	
40	1.5	1.5	_	_	0.6	
50	1.5	1.7	2.2		0.55	
60	1.7	1.9	2.2	2.2	0.5	
70	2.0	2.2	2.6	3.0	0.5	

1) Ratio from this table multiplied by length in Table A gives length of speed change lane on grade.

RATIO OF LENGTH OF SPEED-CHANGE LANE ON GRADE TO LENGTH OF LEVEL ACCELERATION LANE

TABLE B

JUNE 1996

STANDARD DRAWING NO.E 401-REBS-04

DETAILS PLACED IN THIS FORMAT 11-15-99

/s/Anthony L. Uremovich 11-15-99
DESIGN STANDARDS ENGINEER DATE

/s/Firoz Zandi #1-5-99
CHIEF HIGHNAY ENGINEER DATE
DESIGN STANDARDS ENGINEER ORGANALLY APPROVED 6-03-96

EXISTING HMA PAVEMENT TO NEW PCCP

INDIANA DEPARTMENT OF TRANSPORTATION

PAVEMENT TYPE TRANSITION

SEPTEMBER 1999

STANDARD DRAWING NO.E 500-PTRN-01

/s/ Anthony L. Uremovich 9-01-99
DESIGN STANDARDS ENGINEER DATE

/s/ Donald W. Lucas 9-01-99
CHIEF HIGHWAY ENGINEER DATE

TRANSITION DESIGN WITH THICKENED SLAB

New PCCP Thickness is Less Than that of 3" Thick HMA + Existing PCCP $\left(\frac{1}{2} \right)$

TRANSITION DESIGN

New PCCP Thickness is Greater Than or Equal to That of 3" Thick HMA + Existing PCCP

TRANSITION DESIGN

New PCCP to Existing PCCP

 $d > d_{e_1}$ (New PCCP Thicker Than Existing)

 $d < d_{e_2}$ (New PCCP Thinner Than Existing)

INDIANA DEPARTMENT OF TRANSPORTATION PAVEMENT TYPE

TRANSITION

SEPTEMBER 1999

STANDARD DRAWING NO.E 500-PTRN-04

/s/Anthony L. Uremovich 9-01-99
DESIGN STANDARDS ENGINEER DATE

/s/ Donald W. Lucas

GENERAL NOTES

- (1) Pavement contraction joints shall be extended through the concrete shoulder in the gore areas.
- (2) Shoulder corrugations shall be omitted in this area.
- 3 Any required additional length of L above the 600' minimum shall be added to the length of this parallel lane segment. (Example: required L = 700' then this parallel lane segment length = 400')
- 4. See tables on Standard Drawing E 401-REBS-04.
- 5. See Standard Drawing E 401-REBS-03 for Section B-B.

CURVE DATA

△ = 3°00'00"

R = 2864.79'

T = 75.02'

L = 150.0'

E = 0.98'

LEGEND

- (A) Pavement type and thickness as specified for the mainline.
- B Pavement type and thickness as specified for ramps.
- 4 Longitudinal joint
- (21) Longitudinal construction joint

Concrete shoulder (Thickness of mainline pavement)

Concrete shoulder (Thickness as specified on Typical Sections)

SEPTEMBER 2008

STANDARD DRAWING NO. E 501-RECS-01

/s/Richard L. VanCleave **DESIGN STANDARDS ENGINEER**

09/02/08 DATE

/s/ Mark A. Miller CHIEF HIGHWAY ENGINEER 09/02/08 DATE

For underdrain details see Standard Drawing E 718-UNDR-01.

SECTION A-A

SECTION B-B

LEGEND

- (A) Pavement type and thickness as specified for the mainline.
- (B) Pavement type and thickness as specified for ramps.
- (3) Longitudinal joint
- (21) Longitudinal construction joint

Concrete shoulder (Thickness of mainline pavement)

Concrete shoulder (Thickness as specified on Typical Sections)

INDIANA DEPARTMENT OF TRANSPORTATION

RAMP CROSS SECTIONS CONCRETE SHOULDERS

JANUARY 1999

STANDARD DRAWING NO. E 501-RECS-03 DETAILS PLACED IN THIS FORMAT

Anthony L. Uremovich 11-15-99

/s/ Firooz Zandi 11-15-99 ORIGINALLY APPROVED 1-04-99

2'-0" Required Width Varies (8'-0" Min.) 1 1 2 Limits of Subgrade Treatment

NOTES:

- 1 Transverse joints spaced at 8'-0" without dowels. Saw cut 1/8" wide and 1" deep.
- 2. See Standard Drawing series E 604-NVUF for HMA pavement sections.

LEGEND

- 1 4" of PCCP
- 2 4" Compacted Aggregate No. 53, Base
- 3 Earth Shoulder
- 4 Subgrade Treatment III, 6" of Soil Compacted to the Density and Moisture Requirement
- 5 Width and Cross Slope as Required

INDIANA DEPARTMENT OF TRANSPORTATION

NON-MOTORIZED VEHICLE USE FACILITY PCCP PAVEMENT SECTION

SEPTEMBER 2015

STANDARD DRAWING NO. E 502-NVUF-01

/s/Elizabeth W. Phillips
DESIGN STANDARDS ENGINEER

03/09/15 DATE

/s/ Mark A. Miller
CHIEF ENGINEER

03/09/15

DATE

NOTES

- 1 Terminal joint elevation shall match elevation of adjacent PCCP and RCBA
- 2 Limits of polyethylene bond breaker.
- (3) RCBA thickness.

SECTION A-A

INDIANA DEPARTMENT OF TRANSPORTATION

REINFORCED CONCRETE BRIDGE APPROACH
TERMINAL JOINT
FOR USE WITH PCCP
SEPTEMBER 2012

STANDARD DRAWING NO. E 503-BATJ-01

/s/Richard L. Van Cleave

SUPERVISOR, ROADWAY STANDARDS

/s/ Mark A. Miller

09/04/12

09/04/12

DATE

CHIEF ENGINEER DATE

DOWEL BAR SIZES				
Pavement Thickness, D	Dowel Bar Diameter			
Less than 9"	1"			
9" through 12"	1 <mark>1</mark> "			
Greater than 12"	1 1 "			

LONGITUDINAL SECTION THROUGH PCCP

NOTES:

1 For Type D-1 contraction joint sealant options, see Standard Drawing E 503-CCPJ-06.

INDIANA DEPARTMENT OF TRANSPORTATION

TYPE D-1 **CONTRACTION JOINT**

SEPTEMBER 2007

STANDARD DRAWING NO. E 503-CCPJ-01

/s/Richard L. VanCleave 9/4/07 DESIGN STANDARDS ENGINEER DATE

DATE

/s/ Mark A. Miller 9/4/07 CHIEF HIGHWAY ENGINEER

TIE-BAR SIZES FOR LONGITUDINAL JOINT					
Pavement Thickness, D	Tie-Bar Size				
Less than or equal to 9"	#5				
Greater than 9"	#6				

TRANSVERSE SECTION THROUGH PCCP

INDIANA DEPARTMENT OF TRANSPORTATION

LONGITUDINAL JOINT

SEPTEMBER 2012

STANDARD DRAWING NO. E 503-CCPJ-02

/s/Richard L. VanCleave

09/04/12 DATE

SUPERVISOR, ROADWAY STANDARDS

/s/ Mark A. Miller 09/04/12

CHIEF ENGINEER

NOTES

1. See Standard Drawings E 503-CCPJ-01, -02, and -03 for sawed construction joint sealant options.

KEYWAY JOINT

SEPTEMBER 1999

STANDARD DRAWING NO. E 503-CCPJ-04

/s/Anthony L. Uremovich 9-01-99
DESIGN STANDARDS ENGINEER DATE

/s/ Donald W. Lucas

NOTES

- Transverse joints shall be constructed perpendicular to the centerline with a maximum spacing of 18'-0" unless otherwise specified.
- The configuration of the preformed elastomeric joint seal shall be a 9/16" to 5/8" wide seal with at least a five cell internal design. The seal height shall be 9/16" to 13/16" in uncompressed stage.
- For transverse construction joints, the initial saw cut may be eliminated.

TIE-BAR SIZES FOR LONGITUDINAL CONSTRUCTION JOINT					
Pavement Thickness, D	Tie-Bar Size	Spacing			
Less than 9"	#5	3'-0" c/c			
9" through 12"	#6	3'-0" c/c			
Greater than 12"	#6	2'-0'' c/c 3'-0'' c/c			
Greater than 12	or #7	3'-0" c/c			

SECTION A-A

METHOD OF PLACING TIE-BAR FOR LONGITUDINAL CONSTRUCTION JOINT

INDIANA DEPARTMENT OF TRANSPORTATION

LONGITUDINAL CONSTRUCTION

JOINT

SEPTEMBER 1999

STANDARD DRAWING NO. E 503—CCPJ—07

/s/Donald W. Lucas
CHIEF HIGHWAY ENGINEER

9-01-99

PAVEMENT	LONGITUDINAL CONSTRUCTION JOINT Retrofit Tie-bars at 3'-0" c/c				
THICKNESS, D	TIE-BAR SIZE	MIN. LENGTH OF EMBEDMENT, le			
Less than or equal to 9"	#5	1'-0"			
Greater than 9"	#6	1'-0"			

RETROFIT CONSTRUCTION TIE-BAR EMBEDMENT DETAIL

NOTES:

1 Diameter of drilled hole (d) shall be in accordance with the chemical anchor system manufacturer's instructions.

INDIANA DEPARTMENT OF TRANSPORTATION

LONGITUDINAL CONSTRUCTION JOINT

SEPTEMBER 2011

STANDARD DRAWING NO. E 503-CCPJ-08

/s/ Richard L. VanCleave 09/01/11

DESIGN STANDARDS ENGINEER DATE

/s/ Mark A. Miller 09/01/11

CHIEF HIGHWAY ENGINEER DATE

NOTES:

1. For dowel slot layout requirements, see Standard Drawing E 507-RLTC-02.

Less than 12"

or equal to 12"

1 1/4"

1 ½"

INDIANA DEPARTMENT OF TRANSPORTATION

RETROFIT LOAD
TRANSFER FOR PCCP

SEPTEMBER 2004

STANDARD DRAWING NO. E 507-RLTC-01

/s/ Richard L. VanCleave 09/01/04
DESIGN STANDARDS ENGINEER DATE

/s/ Richard K, Smutzer 09/01/04
CHIEF ENGINEER DATE

NOTES:

- PCCP retrofit load transfer may be utilized at perpendicular joints, skewed joints, or at random cracks.
- (2) If lane width is 12 ft, use 3' offset. If lane width is 14 ft. use 4' offset.
- Dowel slots shall be constructed parallel to pavement centerline.

INDIANA DEPARTMENT OF TRANSPORTATION

RETROFIT LOAD TRANSFER FOR LOAD

SEPTEMBER 2004

STANDARD DRAWING NO. E 507-RLTC-02

/s/ Richard L. VanCleave 9-01-04
DESIGN STANDARDS ENGINEER DATE

/s/ Richard K.Smutzer
CHIEF HIGHWAY ENGINEER

9-01-04 DATE